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Abstract

Melting of an alloy powder bed with constant heat flux for application in selective laser sintering (SLS) is analyzed in this paper. Since
melting of an alloy occurs in a range of temperatures, instead of at a single melting point, there will be a mushy zone – containing par-
tially melted powders – between the unmelted region and the completely melted region. The mushy zone can be further divided into two
sub-regions: (1) a lower part with constant porosity (shrinkage takes place), and (2) an upper part with constant volume (no shrinkage).
Temperature distributions in different regions and locations of melting interfaces are obtained using an integral approximation method.
The results show that increasing initial porosity and temperature of the powder bed accelerate the melting process. The melting slows
down with increasing thermal conductivity of the interstitial gas.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Direct metal laser sintering (DMLS) is a rapid prototyp-
ing/manufacturing technology, which directly fabricates
parts via melting and resolidification of metallic powders
[1–5]. Fundamentals of heat transfer in melting and solidi-
fication have been studied intensively and are well docu-
mented [6–8]. Carslaw and Jaeger [9] discussed melting of
a semi-infinite body with constant thermophysical proper-
ties, and obtained an analytical solution for Dirichlet
boundary conditions. Lax [10] studies the temperature rise
under a steady-state condition due to a stationary Gaus-
sian beam in a semi-infinite cylindrical medium. Bell [11]
developed a one-dimensional thermal model for laser
annealing over a wide range of laser pulse duration and
absorption coefficient. Yilbas [12] has presented a numeri-
cal solution for a pulsed CO2 laser heating process. Ros-
taml and Raisi [13] have numerically solved the
temperature distribution and melt pool size in a semi-infi-
nite body due to a moving laser heat source. Kim and
Sim [14] have studied thermal behavior and fluid flow
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during laser surface heating of alloys. Iwamoto et al. [15]
have performed numerical analysis of energy transfer and
surface modification of a metal surface by pulsed laser
heating. While the above studies focused on long-pulse
laser-material interactions, phase change heat transfer dur-
ing ultrashort laser processing of metal films has also been
investigated [16,17]. The thermal contact resistance
between the mold and substrate during laser-assisted
imprinting fabrication was numerically investigated by
Hsiao et al. [18].

During the DMLS process, the powder bed shrinks as
the porosity of the powder bed becomes nearly zero after
melting. The effect of shrinkage during solid–liquid phase
change processes has been investigated by some research-
ers. Eckert and Drake [19] obtained a similarity solution
of a one-dimensional solidification problem with the con-
sideration of the density change in phase change. Zhang
and Faghri [20] analytically solved a one-dimensional melt-
ing problem in a powder bed containing a powder mixture
under a boundary condition of the second kind. The results
showed that the shrinkage effect on the melting of the pow-
der bed is not negligible. Konrad et al. [21] obtained an
analytical solution of melting and resolidification of a
two-component metal powder bed subjected to temporal
Gaussian heat flux. Xiao and Zhang [22] analytically solved
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Nomenclature

c specific heat (J/kg K)
f mass fraction of solid
f0 mass fraction of solid on the heating surface
hs‘ latent heat of melting (J/kg)
k thermal conductivity (W/m K)
K dimensionless thermal conductivity
q00 heat flux absorbed by the powder bed (W/m2)
s0 location of heating surface (m)
sm location of interface between upper and lower

parts of mushy zone (m)
s‘ location of interface between liquid and mushy

zones (m)
s location of interface between solid and mushy

zones (m)
S0 dimensionless location of heating surface
Sm dimensionless location of interface between

upper and lower parts of mushy zone
S‘ dimensionless location of interface between

liquid and mushy zones
S dimensionless location of interface between

solid and mushy zone
Ti initial temperature on the powder bed
T temperature (K)
T‘m liquidus temperature (K)
Tsm solidus temperature (K)
t time (s)
V volume (m3)
w shrinkage velocity (m/s)
W dimensionless shrinkage velocity

z vertical coordinate (m)
Z dimensionless vertical coordinate

Greek symbols

a thermal diffusivity (m2 s)
a0 weighted average in the function for calculating

effective thermal conductivity of the powder bed
d powder thermal penetration depth (m)
dh dimensionless melting temperature range
h dimensionless temperature
D dimensionless thermal penetration depth
e porosity (volume fraction of void), (Vg + V‘)/

(Vg + V‘ + Vs)
q density (kg/m3)
s dimensionless time
ug volume fraction of gas, Vg/(Vg + V‘ + Vs)
u‘ volume fraction of liquid, V‘/(Vg + V‘ + Vs)
us volume fraction of solid, Vs/(Vg + V‘ + Vs)

Subscripts

0 surface
eff effective
g gas
f fusion
i initial
‘ liquid
m mushy zone
p metal powder
s solid
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rapid melting of a subcooled single-component metal pow-
der bed in the SLS process. Under irradiation of a pulse
laser beam, the surface of the powder particle is molten first
and the core of the particle remains solid. Melting in SLS
of single-component metal powder was modeled as melting
occurring in a range of temperature with significant density
change.

In contrast to metals with well-defined melting point,
alloyed powders exhibits a melting temperature range dur-
ing the sintering process. Therefore, mushy zone containing
mixture of liquid and solid is formed, and the temperature
in the mushy zone is between solidus and liquidus temper-
atures. Niu and Chang [23] showed that during the DMLS
of high-speed steel powders, a liquid phase forms along the
grain boundaries in the particles. The liquid flows and wets
the solid particles or the grain boundaries. This results in
rapid densification by rearrangement of the solid particles.
Prabhu and Bourell reported similar mechanism in the
DMLS of pre-alloyed bronze powders [24].

Before DMLS of alloy powders, the powder structure is
supported by the solid particles. Partial melting of the pow-
der particle during DMLS will result in decrease of the
powder bed volume because the void spaces initially occu-
pied by the gas will be taken up by the liquid phase. Con-
servation of mass principles shows that the porosity of the
powder bed, defined as summation of the volume fraction
of the gas and liquid, remains constant (while the volume
of the powder bed shrinks) [25]. When all gas is driven
out, the shrinkage process ceases and the volume of the
powder will be constant from that moment. Therefore,
the mushy zone between the liquid region and solid region
can be further divided into two parts: the lower part with
constant porosity and the upper part with constant volume.

In order to understand the mechanisms of DMLS of
alloy powders, melting of alloy powder bed with shrinkage
phenomena will be investigated in this paper. The temper-
ature distribution and locations of melting interfaces will
be obtained using an integral approximation method.
Effects of processing parameters such as porosity, subcool-
ing parameters, and thermal conductivity of the interstitial
gas(es) on melting process will be investigated.

2. Physical model

The problem under consideration is shown in Fig. 1. A
randomly packed metal powder bed, which is initially at a
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Fig. 1. Physical model of direct metal laser sintering with constant heat flux.
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uniform temperature, Ti, below the solidus temperature of
the powders, Tsm, is in a half space, z > 0. At time t = 0, a
constant heat flux, q00, is applied to the surface of the pow-
der bed. Since alloy powders melt in a range of temperature
(Tsm,T‘m), a mushy zone is formed when the surface
temperature of the powder bed reaches the solidus temper-
ature. The mushy zone can be divided into two sub-regions
depending on whether shrinkage is accompanied: (1) lower
part with constant porosity (shrinkage takes place), and (2)
upper part with constant volume (no shrinkage). The melt-
ing of alloy powders is accomplished in three stages. Dur-
ing the first stage, the lower part of the mushy zone that
contains gas, liquid and solid is formed. The porosity –
defined as the total volume of void, including the volumes
of gas and liquid, relative to the total volume occupied
by the solid matrix and void volume [e = (V‘ + Vg)/
(V‘ + Vg + Vs) = ug + u‘; 25] – is constant in the lower
part of the mushy zone. The whole powder bed shrinks
as the interstitial gas between solid particles is driven out
by the generated liquid phase. During the second stage,
the upper part of the mushy zone that contains liquid
and solid only is formed on top of the lower part of the
mushy zone when the volume fraction of gas, ug, on the
heating surface becomes zero. While shrinkage takes place
in the lower part where the porosity remains constant,
there is no shrinkage in the upper part if the densities of
the solid and liquid phases of the powder material are the
same. When the surface temperature of the powder bed
reaches the liquidus temperature, the liquid region appears
on top of the upper part of mushy zone and the process
enters the third stage. During this stage, the powder bed
is divided into four regions from the bottom to the heating
surface: (1) unsintered region, (2) lower part of mushy zone
with constant porosity (shrinkage takes place), (3) upper
part of mushy zone with constant volume (no shrinkage),
and (4) liquid region (see Fig. 1). The third stage of the
melting represents the most complex situation and its gov-
erning equations and solutions are presented below.
2.1. Governing equations in different regions and interfaces

2.1.1. The unsintered region

The energy equation of the unsintered region under-
neath the mushy zone is

ðqcÞpð1� eÞ oT s

ot
¼ keff

o
2T s

oz2
; sðtÞ < z <1 ð1Þ

where keff is the effective thermal conductivity in the unsin-
tered region of the powder bed, which can be estimated
using empirical correlation proposed by Hadley [26] for
randomly packed spherical particles

keff ¼ kgð1� a0Þ
ef0 þ ðkp=kgÞð1� ef0Þ

1� eð1� f0Þ þ ðkp=kgÞeð1� f0Þ

þ a0

2ðkp=kgÞ2ð1� eÞ þ ð1þ 2eÞðkp=kgÞ
ð2þ eÞðkp=kgÞ þ 1� e

ð2Þ

where

f0 ¼ 0:8þ 0:1e ð3Þ

loga0 ¼
�4:898e 06 e6 0:0827

�0:405� 3:154ðe� 0:0827Þ 0:08276 e6 0:298

�1:084� 6:778ðe� 0:298Þ 0:2986 e6 0:580

8><
>:

ð4Þ
2.1.2. The lower part of the mushy zone
The energy and continuity equations are

oðqcT mÞ
ot

þ oðqcwT mÞ
oz

¼ o

oz
k
oT m

oz

� �
þ qhs‘

of
ot

smðtÞ < z < sðtÞ ð5Þ
oq
ot
þ oðqwÞ

oz
¼ 0; smðtÞ < z < sðtÞ ð6Þ

Neglecting the contribution of gas to the density and heat
capacity, the thermal properties of the lower part of the
mushy zone can be expressed as
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ðqcÞm ¼ ð1� ugÞðqcÞp ð7Þ
qm ¼ ð1� ugÞqp ð8Þ
km ¼ ð1� ugÞkp ð9Þ

where the subscript p represents the properties of powder
material. The thermal conductivity in the partially molten
region, km, is much higher than that before melting because
the contact area between the liquid and solid is significantly
increased.

The degree of melting in the mushy zone can be mea-
sured by the solid fraction, f: a value of 1 indicates full
solid, 0 indicates full liquid, and the value between 1 and
0 indicates mixture of solid and liquid. The solid fraction
is related to the local temperature by

f ¼

0 T P T ‘m

T ‘m � T
T ‘m � T sm

T sm < T < T ‘m

1 T 6 T sm

8>><
>>: ð10Þ

The solid mass fraction, f, is related to the volume fractions
of solid and liquid by

f ¼
qpsus

qpsus þ qp‘u‘

ð11Þ

where qps and qp‘ are densities of the solid and liquid
phases of the powder material, which are assumed to be
the same in the present study (qps = qp‘). At the lower part
of the mushy zone, porosity in the mushy zone remains
constant, so that always equals to 1 � e. Eq. (11) can there-
fore be simplified as

f ¼ 1� e
1� ug

ð12Þ

Substituting Eqs. (7)–(9) and Eq. (12) into Eqs. (5) and (6)
the energy and continuity equations become

o

ot
T m

f

� �
þ o

oz
w

T m

f

� �
¼ ap

o

oz
1

f
oT m

oz

� �
þ hs‘

cp

1

f
of
ot

smðtÞ < z < sðtÞ ð13Þ
o

ot
1

f

� �
þ o

oz
w

1

f

� �
¼ 0; smðtÞ < z < sðtÞ ð14Þ
2.1.3. The upper part of the mushy zone

The energy equation is

oT m

ot
þ w0

oT m

oz
¼ ap

o2T m

oz2
þ hs‘

cp

of
ot
; s‘ðtÞ < z < smðtÞ

ð15Þ
Substituting Eq. (10) into Eq. (15), the energy equation in
the upper part becomes

1þ hs‘

2cpDT

� �
oT m

ot
þ w0

oT m

oz
¼ ap

o2T m

oz2
; s‘ðtÞ < z < smðtÞ

ð16Þ
where DT = T‘m � Tsm and w0 = ds0/dt.
2.1.4. The liquid region

The energy equation is

oT ‘

ot
þ w0

oT ‘

oz
¼ ap

o
2T ‘

oz2
; s0ðtÞ < z < s‘ðtÞ ð17Þ

which is subject to the following boundary condition

kp

oT ‘

oz
¼ �q00; z ¼ s0ðtÞ ð18Þ
2.1.5. Interfacial boundary conditions

The temperature at the interface between the mushy
zone and unsintered regions is equal to the solidus temper-
ature, i.e.,

T s ¼ T m ¼ T sm; z ¼ sðtÞ ð19Þ

and the energy balance at the interface between mushy
zone and unsintered regions is

kpð1� eÞ oT m

oz
¼ keff

oT s

oz
; z ¼ sðtÞ ð20Þ

At the interface between the upper and lower parts of the
mushy zone, the volume fraction of the gas, ug, is zero
and the solid fraction, f, is equal to 1 � e according to
Eq. (12). Therefore, the temperature at the interface be-
tween the upper and lower parts can be obtained from
Eq. (10), i.e.,

T m ¼ T sm þ eðT ‘m � T smÞ; z ¼ smðtÞ ð21Þ

The energy balance at the interface of the upper and lower
parts of mushy zone is

oT m

oz

����
z¼sþm

¼ oT m

oz

����
z¼s�m

; z ¼ smðtÞ ð22Þ

The temperature at the interface between mushy zone and
liquid region is equal to the liquidus temperature

T ‘ ¼ T m ¼ T ‘m; z ¼ s‘ðtÞ ð23Þ

The energy balance at the interface between mushy and
liquid zones is

oT ‘

oz
¼ oT m

oz
; z ¼ s‘ðtÞ ð24Þ
3. Non-dimensional governing equations

Introducing the following dimensionless variables

s ¼ apt

ðapqphs‘=q00Þ2
; h ¼ cpðT � T ‘mÞ

hs‘

;

Z ¼ z
apqphs‘=q00

; S ¼ s
apqphs‘=q00

;

W ¼
wapqphs‘=q00

ap

; W 0 ¼
w0apqphs‘=q00

ap

;

Keff ¼
keff

kpð1� eÞ ; dh ¼ cpðT ‘m � T smÞ
hs‘

ð25Þ
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the governing equations and boundary conditions can be
nondimensionalized as follows:

Keff
o

2hs

oZ2
¼ ohs

os
; SðsÞ < Z <1 ð26Þ

o

os
hm

f

� �
þ o

oZ
W

hm

f

� �
¼ o

oZ
1

f
ohm

oZ

� �
þ 1

f
of
os
;

SmðsÞ < Z < SðsÞ ð27Þ
o

os
1

f

� �
þ o

oZ
W
f

� �
¼ 0; SmðsÞ < Z < SðsÞ ð28Þ

1þ 1

dh

� �
ohm

os
þ W 0

ohm

oZ
¼ o

2hm

oZ2
; S‘ðsÞ < Z < SmðsÞ

ð29Þ
o2h‘
oZ2
¼ oh‘

os
þ W 0

oh‘
oZ

; S0ðsÞ < Z < S‘ðsÞ ð30Þ
oh‘
oZ
¼ � 1

1� e
; Z ¼ S0ðsÞ ð31Þ

hs ¼ hm ¼ �dh; Z ¼ SðsÞ ð32Þ

Keff

ohs

oZ
¼ ohm

oZ
; Z ¼ SðsÞ ð33Þ

hm ¼ ðe� 1Þdh; Z ¼ SmðsÞ ð34Þ
ohm

oZ

����
Z¼Sþm

¼ ohm

oZ

����
Z¼S�m

; Z ¼ SmðsÞ ð35Þ

h‘ ¼ hm ¼ 0; Z ¼ S‘ðsÞ ð36Þ
oh‘
oZ
¼ ohm

oZ
; Z ¼ S‘ðsÞ ð37Þ
4. Integral approximate solutions

The integral approximate method for unsintered region
requires introduction of the dimensionless thermal penetra-
tion depth, D, beyond which the temperature of the powder
bed is not affected by the surface heating, i.e.,

hsðD; sÞ ¼ 0ð38Þ
ohsðD; sÞ

oZ
¼ 0ð39Þ

The integral equation of unsintered region is obtained by
integrating Eq. (26) in the interval of (S,D) with respect
to Z:

Keff

ohðD;sÞ
oZ

�ohðS;sÞ
oZ

� �
¼ d

ds

Z D

S
hdZ�hiD�dhS

� �
ð40Þ

Assuming a second degree polynomial temperature distri-
bution in the unsintered region and using Eqs. (32), (38)
and (39) to determine the constants, the temperature distri-
bution in the unsintered region is obtained

hsðZ; sÞ ¼ hi � ðhi þ DhmÞ
D� Z
D� S

� �2

ð41Þ

Substituting Eq. (41) into Eq. (40), one obtains the follow-
ing differential equation for thermal penetration depth and
the interface between the unsintered region and mushy
zone
6Keff

D� S
¼ dD

ds
þ 2

dS
ds

ð42Þ

The integral equations in the lower part of the mushy zone
are obtained by integrating Eqs. (27) and (28) from Sm to S

with respect to Z:

d

ds

Z S

Sm

hm

f
dZ�

Z S

Sm

ðlnf ÞdZ�hm

f

����
Z¼S

S� ln f jZ¼Sm
Sm

� �
¼ 1

f
ohm

oZ

����
S

Sm

ð43Þ

d

ds

Z S

Sm

1

f
dz� 1

f

����
Z¼S

Sþ 1

f

����
Z¼Sm

Sm

 !
þW

f

����
S

Sm

¼ 0 ð44Þ

The expression of solid fraction, f, as a single value of tem-
perature in the lower part of the mushy zone defined in Eq.
(10), is difficult to be used in Eqs. (43) and (44) because of
the complexity of the integral equations. The effect of the
distribution of the solid fraction in the mushy zone using
the integral method was investigated by Tien and Geiger
[27], who concluded that the result deviations are only four
to eight percent when different forms of solid fraction dis-
tributions were used. For the ease of integration, the in-
verse of solid fraction is assumed to be a linear function
of in the mushy zone, i.e.,

1

f
¼ 1þ e

1� e
S � Z

S � Sm

ð45Þ

It is also assumed that temperature distribution in the
lower part of the mushy zone is a second degree polynomial
function

hm

f
¼ B0 þ B1

S � Z
S � Sm

� �
þ B2

S � Z
S � Sm

� �2

;

SmðsÞ < Z < SðsÞ; s > s‘ ð46Þ

where the constants, B0, B1 and B2 can be obtained by
using the boundary conditions specified by Eqs. (32)–(34):

B0 ¼ �dh ð47Þ

B1 ¼ �
e

1� e
dh� 2Keffðhi þ dhÞðS � SmÞ

D� S
ð48Þ

B2 ¼
e

1� e
dhþ 2Keffðhi þ dhÞðS � SmÞ

D� S
ð49Þ

Substituting Eqs. (45)–(49) into Eqs. (43) and (44), one
obtains

Sm¼
2

e
S0�S ð50Þ

d

ds
�KeffðhiþdhÞ

3ðD�SÞ ðS�SmÞ2�
edh

6ð1� eÞþ1þ lnð1� eÞ
e

� �
ðS�SmÞ

� �

þdh
dS0

ds
� lnð1� eÞdSm

ds
¼ 4KeffðhiþdhÞ

D�S
þ eð2� eÞdh
ð1� eÞðS�SmÞ

ð51Þ

Integrating Eq. (29) in the interval of (S‘,Sm) with respect
to Z, the integral equation for the upper part of the mushy
zone becomes



Table 1
Thermophysical properties of nickel braze

Properties Symbol Unit Value

Density qp kg/m3 8257
Thermal conductivity kp W/m K 14.65
Specific heat cp J/kg K 462.6
Solidus temperature Tsm �C 971
Liquidus temperature T‘m �C 999
Latent heat of fusion hs‘ kJ/kg 377.4
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Fig. 2. Surface temperature for different initial porosities.
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1þ 1

dh

� �
d

ds

Z Sm

S‘

hm dZ � ðe� 1Þdh
dSm

ds

� �
þ W 0½ðe� 1Þdh�

¼ ohm

oZ

����
Z¼Sm

� ohm

oZ

����
Z¼S‘

ð52Þ

Assuming the temperature distribution in the upper part of
the mushy zone as a second degree polynomial function
and applying the boundary conditions of Eqs. (34)–(36)
yields

hm ¼ ðe� 1Þdhþ DmðSm � ZÞ þ ½ð1� eÞdh

� DmðSm � S‘Þ�
Sm � Z
Sm � S‘

� �2

ð53Þ

where

Dm ¼
eð2� eÞdh

S � Sm

þ 2Keffðhi þ dhÞð1� eÞ
D� S

ð54Þ

Substituting Eq. (53) into Eq. (52) yields

1þ 1

dh

� �
d

ds
1

6
DmðSm � S‘Þ2 þ

ð1� eÞdh
3

ð4Sm � S‘Þ
� �

�ð1� eÞdh
dS0

ds
¼ 2ð1� eÞdh

Sm � S‘
� 2Dm

ð55Þ
Since the entire liquid layer moves with the velocity W0, the
layer is stationary from the coordinate Z0 that moves with
velocity W0. The relationship between the two coordinate
systems is

Z 0 ¼ Z �
Z s

s‘

W 0 ds ¼ Z � S0 ð56Þ

The energy equation and the corresponding boundary con-
ditions can be rewritten as

o2h‘
oZ 02
¼ oh‘

os
; 0 < Z 0 < S‘ � S0; s > s‘ ð57Þ

oh‘
oZ 0
¼ � 1

1� e
; Z 0 ¼ 0; s > s‘ ð58Þ

h‘ðZ 0; sÞ ¼ 0; Z 0 ¼ S‘ � S0; s > s‘ ð59Þ

The exact solution of Eqs. (57)–(59) is [28]

h0‘ðZ 0; sÞ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s‘
p

1� e
ierfc

Z 0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s‘
p

� �
� ierfc

S‘ � S0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s‘
p

� �� �
ð60Þ

Changing back to the Z coordinate system, Eq. (60) can be
rewritten as

h‘ðZ; sÞ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s‘
p

1� e
ierfc

Z � S0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s‘
p

� �
� ierfc

S‘ � S0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s‘
p

� �� �
ð61Þ

Substituting Eqs. (53) and (61) into Eq. (37), the energy
balance at the interface between the liquid region and the
mushy zone becomes

1

1� e
erfc

S‘ � S0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s‘
p

� �
¼ 2ð1� eÞdh

Sm � S‘
� Dm ð62Þ
Eqs. (42), (50), (51), (55) and (62) can be solved by the
fourth order Runge–Kutta method with the initial condi-
tions obtained from the solutions of melting at the second
melting stage.
5. Result and discussion

Laser melting of nickel braze (BNi-2) powders – with a
melting temperature range from 971 �C (solidus) to 999 �C
(liquidus) [29] – will be studied to demonstrate the capabil-
ity of the model developed in this study. Nickel braze is
chosen because it is a commonly used mould material for
its high strength and heat resistance to corrosion. The ther-
mophysical properties of Nickel braze used in the calcula-
tions are shown in Table 1 [29,30]. The effects of initial
porosity, subcooling and thermal conductivity of the inter-
stitial gas will be examined.

The initial porosity or the initial volume fraction of the
gas is directly related to the shape and arrangements of the
powders particles. For spherical powder particles, simple-
cubic (6 contact points), body-centered cubic (8 contact
points), face-centered cubic (12 contact points) arrange-
ments correspond to the porosity of 0.476, 0.32, 0.264,
respectively [31]. When the spherical particles are randomly
packed, the porosity is about 0.4. Fig. 2 shows the evolu-
tion of surface temperature for different initial porosities
during the melting process. The surface temperature
increases rapidly during the preheating stage due to low
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thermal conductivity of the loose powders. After the sur-
face temperature reaches to the solidus temperate, melting
occurs and the surface temperature increases slowly. Once
the surface temperature reaches to the liquidus tempera-
ture, a liquid region is formed and the increasing of the sur-
face temperature becomes faster. Due to lower effective
thermal conductivity with higher porosity, the surface tem-
perature increases and the duration of preheating is short-
ened when the initial porosity increases.

Fig. 3 shows the evolution of various interfacial loca-
tions corresponding to the same conditions as Fig. 2. The
motion of solid-mushy interface (S‘) is faster than that of
heating surface (S0) at the beginning. After the upper part
of the mushy zone is formed, the solid-mushy interface
moves downward rapidly due to higher thermal conductiv-
ity in the upper part. After the liquid region is formed, the
liquid-mushy interfacial velocity is faster than the interfa-
cial velocities between two parts of mushy zone, which nar-
rows the thickness of the whole mushy zone. Melting
accelerates with increasing initial porosity because higher
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porosity means lower density and thermal conductivity in
the unsintered region. Fig. 4 shows the evolution of solid
fraction on the surface (X = S0) of the powder bed corre-
sponding to the same conditions as Fig. 2. The solid frac-
tion on the surface decreases slowly before the upper part
of the mushy zone is formed. Upon formation of the upper
part, the solid fraction on the heating surface decreases
rapidly. When initial porosity increases, the decreasing rate
of the solid fraction at the heating surface increases before
the upper part is formed. After the upper part is formed,
the decreasing rate of the solid fraction at the heating sur-
face slows down slightly when initial porosity increases.

Fig. 5 shows the evolution of surface temperature for
different subcooling parameters (or initial temperatures).
When initial temperature decreases, the duration of the
preheating increases and surface temperature increases.
Fig. 6 shows the evolution of interfacial locations corre-
sponding to the same conditions as Fig. 5. The interfacial
velocities increase with increasing subcooling parameter.
Fig. 7 shows the evolution of solid fraction on the heating
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surface corresponding to the same conditions as Fig. 5. It
can be seen that the decreasing rate of the solid fraction
at the heating surface decreases with increasing subcooling
parameter.

Dimensionless thermal conductivity of the gas is a key
factor of the effective thermal conductivity in the unsin-
tered regions [see Eq. (2)] which has significant effect on
the sintering process. Fig. 8 shows the evolution of surface
temperature for different dimensionless thermal conductiv-
ities of the gas. It can be seen that the preheating time
increases significantly when the thermal conductivity of
the gas is increased because more heat is conducted into
the powder bed due to higher effective thermal conductivity
in the unsintered zone. Fig. 9 shows the evolution of inter-
facial locations corresponding to the same conditions as
Fig. 8. The increase of dimensionless thermal conductivity
of the gas does not have significant influence on the thick-
ness of mushy zone. The moving velocities of the interfaces
for the higher thermal conductivity of the interstitial gases
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Fig. 8. Surface temperature for different thermal conductivities of the
interstitial gas.
are faster than those for the lower thermal conductivity of
the interstitial gases. Fig. 10 shows the evolution of the
solid fraction on the heating surface corresponding to the
same conditions as Fig. 8. It can be seen that the decreasing
rate of the solid fraction before upper part of the mushy
zone is formed decreases with increasing thermal conduc-
tivity of the gas. The decreasing rate of the solid fraction
after formation of the upper part increases slightly with
increasing thermal conductivity of the gas.
6. Conclusion

Melting of an alloy powder bed with shrinkage is inves-
tigated analytically. Effects of various processing parame-
ters on the surface temperature, interfacial locations and
solid fraction on the surface were investigated. Increasing
initial porosity of the powder bed shortens the duration
of preheating, increases the surface temperature and inter-
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facial velocities, and accelerates the decrease of solid frac-
tion on the heating surface. Increasing subcooling para-
meter has similar effect on the sintering process with
increasing porosity. On the contrary, increasing thermal
conductivity of the gas, decreases the interfacial velocities
and surface temperature, and decelerates the decrease of
solid fraction on the heating surface.

Acknowledgement

Support for this work by the Office of Naval Research
(ONR) under Grant Number N00014-04-1-0303 is grate-
fully acknowledged.

References

[1] M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct
selective laser sintering of metals, Rapid Prototyping J. 1 (1) (1995)
26–36.

[2] J.G. Conley, H.L. Marcus, Rapid prototyping and solid free form
fabrication, ASME J. Manufacturing Sci. Eng. 119 (4) (1997) 811–
816.

[3] R. Morgan, C.J. Sutcliffe, W. O’Neill, Experimental investigation of
nanosecond pulsed Nd:YAG laser Re-melted pre-placed powder
beds, Rapid Prototyping J. 7 (3) (2001) 159–172.

[4] S. Kumar, Selective laser sintering: a qualitative and objective
approach, JOM 55 (10) (2003) 43–47.

[5] F. Abe, E. Costa Santos, Y. Kitamura, K. Osakada, M. Shiomi,
Influence of forming conditions on the titanium model in rapid
prototyping with the selective laser melting process, Proc. Inst. Mech.
Eng. Part C – J. Mech. Eng. Sci. 217 (1) (2003) 119–126.

[6] R. Viskanta, Phase change heat transfer, in: G.A. Lane (Ed.), Solar
Heat Storage: Latent Heat Materials, CRC Press, Boca Raton, FL,
1983.

[7] L.S. Yao, J. Prusa, Melting and freezing, Adv. Heat Transfer 19
(1989) 1–95.

[8] A. Faghri, Y. Zhang, Transport Phenomena in Multiphase Systems,
Elsevier, Burlington, MA, 2006.

[9] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, Clarendon
Press, Oxford, 2006.

[10] M. Lax, Temperature rise induced by a laser beam, J. Appl. Phys. 48
(9) (1977) 3919–3924.

[11] A.E. Bell, Review and analysis of laser annealing, RCA Rev. 42 (3)
(1979) 295–298.

[12] B.S. Yilbas, Study into a numerical solution for a pulsed CO2 laser
heating process, Numer. Heat Transfer A 28 (4) (1995) 487–502.

[13] A.A. Rostaml, A. Raisi, Temperature distribution and melt pool size
in a semi-infinite body due to a moving laser heat source, Numer.
Heat Transfer A 31 (7) (1997) 783–796.
[14] W.S. Kim, B.C. Sim, Study of thermal behavior and fluid flow during
laser surface heating of alloys, Numer. Heat Transfer A 31 (7) (1997)
703–723.

[15] M. Iwamoto, M. Ye, C.P. Grigoropoulos, R. Grief, Numerical
analysis of pulsed laser heating for the deformation of metals, Numer.
Heat Transfer A 34 (8) (1998) 791–804.

[16] J.K. Chen, J.E. Beraun, Numerical study of ultrashort laser pulse
interactions with metal films, Numer. Heat Transfer A 40 (1) (2001)
1–20.

[17] I.H. Chowdhury, X. Xu, Heat transfer in femtosecond laser process-
ing of metal, Numer. Heat Transfer A 44 (3) (2003) 219–232.

[18] F.B. Hsiao, D.B. Wang, C.P. Jen, Numerical investigation on thermal
contact resistance between the mold and substrate on laser-assisted
imprinting fabrication, Numer. Heat Transfer A 49 (7) (2006) 669–
682.

[19] E.R.G. Eckert, R.M. Drake, Analysis of Heat and Mass Transfer,
McGraw-Hill, London, 1972.

[20] Y. Zhang, A. Faghri, Melting of a subcooled mixed powder bed with
constant heat flux heating, Int. J. Heat Mass Transfer 42 (5) (1999)
775–788.

[21] C. Konrad, Y. Zhang, B. Xiao, Analysis of melting and resolidifi-
cation in a two-component metal powder bed subjected to temporal
Gaussian heat flux, Int. J. Heat Mass Transfer 48 (19–20) (2005)
3932–3944.

[22] B. Xiao, Y. Zhang, Analysis of partial melting in a metal powder
bed with constant heat flux, Heat Transfer Eng. 28 (5) (2007), to
appear.

[23] H.J. Niu, I.T.H. Chang, Liquid phase sintering of M3/2 high
speed steel by selective laser sintering, Scripta Mater. 39 (1) (1998)
67–72.

[24] G. Prabhu, D.L. Bourell, Supersolidus liquid phase sintering of
prealloyed bronze powder, in: J.J. Beaman, H.L. Marcus, D.L.
Bourell, J.W. Barlow (Eds.), Proceedings of the Solid Freeform
Fabrication Symposium, The University of Texas at Austin, Austin,
TX, 1993, pp. 317–324.

[25] J. Pak, O.A. Plumb, Melting in a two-component packed bed, ASME
J. Heat Transfer 119 (3) (1997) 553–559.

[26] G.R. Hadley, Thermal conductivity of packed metal powders, Int. J.
Heat Mass Transfer 29 (6) (1986) 909–920.

[27] R.H. Tien, G.E. Geiger, A heat-transfer analysis of the solidification
of a binary eutectic system, ASME J. Heat Transfer 89 (3) (1967) 230–
234.

[28] M.S. El-Genk, A.W. Cronenberg, Solidification in a semi-infinite
region with boundary condition of the second kind: an exact solution,
Lett. Heat Mass Transfer 6 (4) (1979) 321–327.

[29] The brazing book, Handy and Harman, New York, 2001. <http://
www.brazingbook.com>.

[30] Y. Zhang, Thermal modeling of advanced manufacturing technolo-
gies: grinding, laser drilling, and solid freeform fabrication, Ph.D.
Thesis, University of Connecticut, Storrs, CT, 1998.

[31] M. Kaviany, Principles of Heat Transfer in Porous Media, second ed.,
Springer-Verlag, New York, 1997.

http://www.brazingbook.com
http://www.brazingbook.com

	Analysis of melting of alloy powder bed with constant heat flux
	Introduction
	Physical model
	Governing equations in different regions and interfaces
	The unsintered region
	The lower part of the mushy zone
	The upper part of the mushy zone
	The liquid region
	Interfacial boundary conditions


	Non-dimensional governing equations
	Integral approximate solutions
	Result and discussion
	Conclusion
	Acknowledgement
	References


